ZIP: 112 Title: CHECKSEQUENCEVERIFY Author: Daira Hopwood <daira@electriccoin.co> Credits: BtcDrak <btcdrak@gmail.com> Mark Friedenbach <mark@friedenbach.org> Eric Lombrozo <elombrozo@gmail.com> Category: Consensus Status: Draft Created: 2019-06-06 License: MIT
The key word "MUST" in this document is to be interpreted as described in RFC 2119. 1
This ZIP describes a new opcode (CHECKSEQUENCEVERIFY
) for the Zcash scripting system, that in combination with ZIP 68 allows execution pathways of a script to be restricted based on the age of the output being spent.
ZIP 68 repurposes the transaction nSequence
field meaning by giving sequence numbers new consensus-enforced semantics as a relative lock-time. However, there is no way to build Zcash scripts to make decisions based on this field.
By making the nSequence
field accessible to script, it becomes possible to construct code pathways that only become accessible some minimum time after proof-of-publication. This enables a wide variety of applications in phased protocols such as escrow, payment channels, or bidirectional pegs.
CHECKSEQUENCEVERIFY
redefines the existing NOP3
opcode. When executed, if any of the following conditions are true, the script interpreter MUST terminate with an error:
Otherwise, script execution MUST continue as if a NOP
had been executed.
ZIP 68 prevents a non-final transaction from being selected for inclusion in a block until the corresponding input has reached the specified age, as measured in block-height or block-time. By comparing the argument to CHECKSEQUENCEVERIFY
against the nSequence
field, we indirectly verify a desired minimum age of the the output being spent; until that relative age has been reached any script execution pathway including the CHECKSEQUENCEVERIFY
will fail to validate, causing the transaction not to be selected for inclusion in a block.
An escrow that times out automatically 30 days after being funded can be established in the following way. Alice, Bob and Escrow create a 2-of-3 address with the following redeem script:
IF 2 <Alice's pubkey> <Bob's pubkey> <Escrow's pubkey> 3 CHECKMULTISIG ELSE "30d" CHECKSEQUENCEVERIFY DROP <Alice's pubkey> CHECKSIG ENDIF
At any time funds can be spent using signatures from any two of Alice, Bob or the Escrow.
After 30 days Alice can sign alone.
The clock does not start ticking until the payment to the escrow address confirms.
In many instances, we would like to create contracts that can be revoked in case of some future event. However, given the immutable nature of the block chain, it is practically impossible to retroactively invalidate a previous commitment that has already confirmed. The only mechanism we really have for retroactive invalidation is block chain reorganization which, for fundamental security reasons, is designed to be very hard and very expensive to do.
Despite this limitation, we do have a way to provide something functionally similar to retroactive invalidation while preserving irreversibility of past commitments using CHECKSEQUENCEVERIFY
. By constructing scripts with multiple branches of execution where one or more of the branches are delayed we provide a time window in which someone can supply an invalidation condition that allows the output to be spent, effectively invalidating the would-be delayed branch and potentially discouraging another party from broadcasting the transaction in the first place. If the invalidation condition does not occur before the timeout, the delayed branch becomes spendable, honoring the original contract.
Some more specific applications of this idea:
Hash Time-Locked Contracts (HTLCs) provide a general mechanism for off-chain contract negotiation. An execution pathway can be made to require knowledge of a secret (a hash preimage) that can be presented within an invalidation time window. By sharing the secret it is possible to guarantee to the counterparty that the transaction will never be broadcast since this would allow the counterparty to claim the output immediately while one would have to wait for the time window to pass. If the secret has not been shared, the counterparty will be unable to use the instant pathway and the delayed pathway must be used instead.
Scriptable relative locktime provides a predictable amount of time to respond in the event a counterparty broadcasts a revoked transaction: Absolute locktime necessitates closing the channel and reopening it when getting close to the timeout, whereas with relative locktime, the clock starts ticking the moment the transaction confirms in a block. It also provides a means to know exactly how long to wait (in number of blocks) before funds can be pulled out of the channel in the event of a noncooperative counterparty.
The lightning network protocol 6 extends the bidirectional payment channel idea to allow for payments to be routed over multiple bidirectional payment channel hops.
These channels are based on an anchor transaction that requires a 2-of-2 multisig from Alice and Bob, and a series of revocable commitment transactions that spend the anchor transaction. The commitment transaction splits the funds from the anchor between Alice and Bob and the latest commitment transaction may be published by either party at any time, finalising the channel.
Ideally then, a revoked commitment transaction would never be able to be successfully spent; and the latest commitment transaction would be able to be spent very quickly.
To allow a commitment transaction to be effectively revoked, Alice and Bob have slightly different versions of the latest commitment transaction. In Alice's version, any outputs in the commitment transaction that pay Alice also include a forced delay, and an alternative branch that allows Bob to spend the output if he knows that transaction's revocation code. In Bob's version, payments to Bob are similarly encumbered. When Alice and Bob negotiate new balances and new commitment transactions, they also reveal the old revocation code, thus committing to not relaying the old transaction.
A simple output, paying to Alice might then look like:
HASH160 <revokehash> EQUAL IF <Bob's pubkey> ELSE "24h" CHECKSEQUENCEVERIFY DROP <Alice's pubkey> ENDIF CHECKSIG
This allows Alice to publish the latest commitment transaction at any time and spend the funds after 24 hours, but also ensures that if Alice relays a revoked transaction, that Bob has 24 hours to claim the funds.
With CHECKLOCKTIMEVERIFY
, this would look like:
HASH160 <revokehash> EQUAL IF <Bob's pubkey> ELSE "2015/12/15" CHECKLOCKTIMEVERIFY DROP <Alice's pubkey> ENDIF CHECKSIG
This form of transaction would mean that if the anchor is unspent on 2015/12/16, Alice can use this commitment even if it has been revoked, simply by spending it immediately, giving no time for Bob to claim it.
This means that the channel has a deadline that cannot be pushed back without hitting the blockchain; and also that funds may not be available until the deadline is hit. CHECKSEQUENCEVERIFY
allows you to avoid making such a tradeoff.
Hashed Time-Lock Contracts (HTLCs) make this slightly more complicated, since in principle they may pay either Alice or Bob, depending on whether Alice discovers a secret R, or a timeout is reached, but the same principle applies -- the branch paying Alice in Alice's commitment transaction gets a delay, and the entire output can be claimed by the other party if the revocation secret is known. With CHECKSEQUENCEVERIFY
, a HTLC payable to Alice might look like the following in Alice's commitment transaction:
HASH160 DUP <R-HASH> EQUAL IF "24h" CHECKSEQUENCEVERIFY 2DROP <Alice's pubkey> ELSE <Commit-Revocation-Hash> EQUAL NOTIF "2015/10/20 10:33" CHECKLOCKTIMEVERIFY DROP ENDIF <Bob's pubkey> ENDIF CHECKSIG
and correspondingly in Bob's commitment transaction:
HASH160 DUP <R-HASH> EQUAL SWAP <Commit-Revocation-Hash> EQUAL ADD IF <Alice's pubkey> ELSE "2015/10/20 10:33" CHECKLOCKTIMEVERIFY "24h" CHECKSEQUENCEVERIFY 2DROP <Bob's pubkey> ENDIF CHECKSIG
Note that both CHECKSEQUENCEVERIFY
and CHECKLOCKTIMEVERIFY
are used in the final branch above to ensure Bob cannot spend the output until after both the timeout is complete and Alice has had time to reveal the revocation secret.
See also the 'Deployable Lightning' paper 5.
The 2-way pegged sidechain requires a new REORGPROOFVERIFY
opcode, the semantics of which are outside the scope of this ZIP. CHECKSEQUENCEVERIFY
is used to make sure that sufficient time has passed since the return peg was posted to publish a reorg proof:
IF lockTxHeight <lockTxHash> nlocktxOut [<workAmount>] reorgBounty Hash160(<...>) <genesisHash> REORGPROOFVERIFY ELSE withdrawLockTime CHECKSEQUENCEVERIFY DROP HASH160 p2shWithdrawDest EQUAL ENDIF
At the time of writing it has not been decided which network upgrade (if any) will implement this proposal.
This ZIP must be deployed simultaneously with ZIP 68 4.
This ZIP is closely based on BIP 112, authored by BtcDrak.
Mark Friedenbach invented the application of sequence numbers to achieve relative lock-time, and wrote the reference implementation of CHECKSEQUENCEVERIFY
for Bitcoin.
The Bitcoin reference implementation and BIP 112 was based heavily on work done by Peter Todd for the closely related BIP 65. Eric Lombrozo and Anthony Towns contributed example use cases.
1 | Key words for use in RFCs to Indicate Requirement Levels |
---|
2 | Zcash Protocol Specification, Version 2019.0.1 or later [Overwinter+Sapling] |
---|
3 | BIP 65: OP_CHECKLOCKTIMEVERIFY |
---|
4 | ZIP 68: Relative lock-time through consensus-enforced sequence numbers |
---|
5 | Deployable Lightning |
---|
6 | Lightning Network paper |
---|
7 | HTLCs using OP_CHECKSEQUENCEVERIFY/OP_LOCKTIMEVERIFY and revocation hashes |
---|
8 | Scaling Bitcoin to Billions of Transactions Per Day |
---|
9 | Jeremy Spilman, Micropayment Channels |
---|